Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages

  • van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    ADS 

    Google Scholar
     

  • Kitzing, L., Jensen, M. K., Telsnig, T. & Lantz, E. Multifaceted drivers for onshore wind energy repowering and their implications for energy transition. Nat. Energy 5, 1012–1021 (2020).

    ADS 

    Google Scholar
     

  • Li, J. et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 3, 116–125 (2020).


    Google Scholar
     

  • Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. 53, 11541–11551 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, H. et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat. Commun. 10, 5398 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z. et al. Resourcing the fairytale country with wind power: a dynamic material flow analysis. Environ. Sci. Technol. 53, 11313–11322 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • International Energy Agency, (IEA). The Role of Critical Minerals in Clean Energy Transitions. https://iea.blob.core.windows.net/assets/24d5dfbb-a77a-4647-abcc-667867207f74/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf (2021).

  • Melton, N., Axsen, J. & Sperling, D. Moving beyond alternative fuel hype to decarbonize transportation. Nat. Energy 1, 16013 (2016).

    ADS 

    Google Scholar
     

  • Kittner, N., Lill, F. & Kammen, D. M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017).

    ADS 

    Google Scholar
     

  • Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Executive Office of the President of the United States Federal Government. Addressing the Threat to the Domestic Supply Chain From Reliance on Critical Minerals From Foreign Adversaries and Supporting the Domestic Mining and Processing Industries. https://www.federalregister.gov/documents/2020/10/05/2020-22064/addressing-the-threat-to-the-domestic-supply-chain-from-reliance-on-critical-minerals-from-foreign (2020).

  • Ministry of Natural Resources & National Development and Reform Commission of the People’s Republic of China. National Mineral Resources Planning 2016-2020. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/t20170511_1196755.html (2016).

  • Blengini, G. A. et al. Study on the EU’s list of Critical Raw Materials (2020) Final Report. https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en (2020).

  • The Ministry of Economy, Trade and Industry of Japan, (METI). New International Resource Strategy. https://www.meti.go.jp/english/press/2020/0330_005.html (2020).

  • Mudd, G. M. et al. Critical minerals in Australia: A review of opportunities and research needs. https://doi.org/10.11636/Record.2018.051 (2018).

  • Hao, H. et al. Securing platinum-group metals for transport low-carbon transition. One Earth 1, 117–125 (2019).


    Google Scholar
     

  • Fishman, T., Myers, R., Rios, O. & Graedel, T. E. Implications of emerging vehicle technologies on rare earth supply and demand in the United States. Resources 7, 9 (2018).


    Google Scholar
     

  • Roskill. Cobalt: Outlook to 2030. https://www.roskillinteractive.com/ (2021).

  • Alves Dias, P., Blagoeva, D., Pavel, C. & Arvanitidis, N. Cobalt: demand-supply balances in the transition to electric mobility. https://data.europa.eu/doi/10.2760/97710 (2018).

  • U.S. Geological Survey. Mineral Commodity Summaries 2020. https://doi.org/10.3133/mcs2020. (2020).

  • Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T. & Butcher, A. R. Geometallurgy of cobalt ores: A review. Miner. Eng. 160, 106656 (2021).

    CAS 

    Google Scholar
     

  • Recycle spent batteries. Nat. Energy 4, 253–253 (2019).

  • Tran, M. K., Rodrigues, M.-T. F., Kato, K., Babu, G. & Ajayan, P. M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4, 339–345 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Horn, S. et al. Cobalt resources in Europe and the potential for new discoveries. Ore Geol. Rev. 130, 103915 (2021).


    Google Scholar
     

  • Banza Lubaba Nkulu, C. et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Sustain. 1, 495–504 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manthiram, A. & Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Energy 6, 323–323 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Cutting cobalt. Nat. Energy 5, 825–825 (2020).

  • Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).


    Google Scholar
     

  • Zeng, X., Ali, S. H., Tian, J. & Li, J. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat. Commun. 11, 1544 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harper, E. M., Kavlak, G. & Graedel, T. E. Tracking the Metal of the Goblins: Cobalt’s Cycle of Use. Environ. Sci. Technol. 46, 1079–1086 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z., Zhang, L. & Xu, Z. Analysis of cobalt flows in mainland China: Exploring the potential opportunities for improving resource efficiency and supply security. J. Clean. Prod. 275, 122841 (2020).

    CAS 

    Google Scholar
     

  • Chen, Z., Zhang, L. & Xu, Z. Tracking and quantifying the cobalt flows in mainland China during 1994–2016: Insights into use, trade and prospective demand. Sci. Total Environ. 672, 752–762 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, X. & Li, J. On the sustainability of cobalt utilization in China. Resour. Conserv. Recycl. 104, 12–18 (2015).


    Google Scholar
     

  • Wang, Y. & Ge, J. Potential of urban cobalt mines in China: An estimation of dynamic material flow from 2007 to 2016. Resour. Conserv. Recycl. 161, 104955 (2020).


    Google Scholar
     

  • Liu, W. et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000–2018. Resour. Conserv. Recycl. 164, 105122 (2021).


    Google Scholar
     

  • Godoy León, M. F., Blengini, G. A. & Dewulf, J. Analysis of long-term statistical data of cobalt flows in the EU. Resour. Conserv. Recycl. 173, 105690 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X., Hao, H., Liu, Z., Zhao, F. & Song, J. Tracing global cobalt flow: 1995–2015. Resour. Conserv. Recycl. 149, 45–55 (2019).

    CAS 

    Google Scholar
     

  • Nansai, K. et al. Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum. Environ. Sci. Technol. 48, 1391–1400 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, X. et al. Perspectives on Cobalt Supply through 2030 in the Face of Changing Demand. Environ. Sci. Technol. 54, 2985–2993 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunn, J. B., Gaines, L., Kelly, J. C., James, C. & Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Env. Sci. 8, 158–168 (2015).

    CAS 

    Google Scholar
     

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical. Met. Joule 1, 229–243 (2017).


    Google Scholar
     

  • Asari, M. & Sakai, S. Li-ion battery recycling and cobalt flow analysis in Japan. Resour. Conserv. Recycl. 81, 52–59 (2013).


    Google Scholar
     

  • Simon, B., Ziemann, S. & Weil, M. Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe. Resour. Conserv. Recycl. 104, 300–310 (2015).


    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 3777 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaines, L. Profitable Recycling of Low-Cobalt Lithium-Ion Batteries Will Depend on New Process Developments. One Earth 1, 413–415 (2019).


    Google Scholar
     

  • Fan, E. et al. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 120, 7020–7063 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Woodard, R. Waste management in Small and Medium Enterprises (SMEs)—A barrier to developing circular cities. Waste Manag 118, 369–379 (2020).

    PubMed 

    Google Scholar
     

  • Michael, K. Glencore to Reopen One of World’s Biggest Cobalt Mines in Congo. Bloomberg.com https://www.bnnbloomberg.ca/glencore-to-reopen-one-of-world-s-biggest-cobalt-mines-in-congo-1.1619919 (2021).

  • Glencore. 2019 Annual Report. Glencore https://www.glencore.com/investors/reports-results/2019-annual-report (2020).

  • European Commission. Study on the review of the list of Critical Raw Materials: Critical Raw Materials Factsheets. https://op.europa.eu/en/publication-detail/-/publication/7345e3e8-98fc-11e7-b92d-01aa75ed71a1/language-en (2017).

  • Ying, L. Cobalt: The spread of COVID-19 threatens supply. Roskill https://roskill.com/news/cobalt-the-spread-of-covid-19-threatens-supply/ (2020).

  • U.S. Geological Survey, (USGS), Science for a changing world. https://www.usgs.gov/.

  • European Commission. Battery 2030+ Roadmap: Investing the sustainable battery of the future. https://battery2030.eu/digitalAssets/861/c_861008-l_1-k_roadmap-27-march.pdf (2020).

  • Jack, F. & Mark, G. Apple in Talks to Buy Cobalt Directly From Miners. Bloomberg.com https://www.bloomberg.com/news/articles/2018-02-21/apple-is-said-to-negotiate-buying-cobalt-direct-from-miners (2018).

  • Gersdorf, T., Hertzke, P., Schaufuss, P. & Schenk, S. McKinsey Electric Vehicle Index: Europe cushions a global plunge in EV sales. https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mckinsey%20electric%20vehicle%20index%20europe%20cushions%20a%20global%20plunge%20in%20ev%20sales/mckinsey-electric-vehicle-index-europe-cushions-a-global-plunge-in-ev-sales-vf.pdf?shouldIndex=false (2020).

  • Lee-Jones, S. Tesla Launches Entry Model 3 with Newer LFP Battery Tech in the U.S. TeslaNorth.com https://teslanorth.com/2021/08/26/tesla-launches-entry-model-3-with-newer-lfp-battery-tech-in-the-u-s/ (2021).

  • Liu, G. & Müller, D. B. Centennial Evolution of Aluminum In-Use Stocks on Our Aluminized Planet. Environ. Sci. Technol. 47, 4882–4888 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • B. Müller, D. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecol. Econ. 59, 142–156 (2006).


    Google Scholar
     

  • Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods. Environ. Sci. Technol. 48, 2102–2113 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Pauliuk, S., Wang, T. & Müller, D. B. Moving Toward the Circular Economy: The Role of Stocks in the Chinese Steel Cycle. Environ. Sci. Technol. 46, 148–154 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G., Bangs, C. E. & Müller, D. B. Unearthing Potentials for Decarbonizing the U.S. Aluminum Cycle. Environ. Sci. Technol. 45, 9515–9522 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pillot, C. The Rechargeable Battery Market and Main Trends 2011-2020. https://niobium.tech/-/media/NiobiumTech/Documentos/2019-Formula-E—Berlin/NT_The-rechargeable-battery-market-and-main-trends.pdf (2016).

  • Hao, H., Cheng, X., Liu, Z. & Zhao, F. China’s traction battery technology roadmap: Targets, impacts and concerns. Energy Policy. 108, 355–358 (2017).


    Google Scholar
     

  • Azevedo, M. et al. Lithium and cobalt—a tale of two commodities. https://www.mckinsey.com/~/media/mckinsey/industries/metals%20and%20mining/our%20insights/lithium%20and%20cobalt%20a%20tale%20of%20two%20commodities/lithium-and-cobalt-a-tale-of-two-commodities.pdf (2018).

  • Lee, S.-H., Lee, S., Jin, B.-S. & Kim, H.-S. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci. Rep. 9, 8901 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R., Zhao, T., Zhang, X., Li, L. & Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz. 1, 423–444 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wentker, M., Greenwood, M. & Leker, J. A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials. Energies 12, 504 (2019).

    CAS 

    Google Scholar
     

  • Jia, H. et al. Toward the Practical Use of Cobalt-Free Lithium-Ion Batteries by an Advanced Ether-Based Electrolyte. ACS Appl. Mater. Interfaces 13, 44339–44347 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ely, T. O., Kamzabek, D., Chakraborty, D. & Doherty, M. F. Lithium–Sulfur Batteries: State of the Art and Future Directions. ACS Appl. Energy Mater. 1, 1783–1814 (2018).


    Google Scholar
     

  • Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • O’Donovan, A., Frith, J. & McKerracher, C. Electric Buses in Cities: Driving Towards Cleaner Air and Lower CO2. https://assets.bbhub.io/professional/sites/24/2018/05/Electric-Buses-in-Cities-Report-BNEF-C40-Citi.pdf (2018).

  • Zablocki, A. Fact Sheet: Energy Storage. https://www.eesi.org/files/FactSheet_Energy_Storage_0219.pdf (2019).

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Richa, K., Babbitt, C. W., Gaustad, G. & Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 83, 63–76 (2014).


    Google Scholar
     

  • Wang, X., Gaustad, G., Babbitt, C. W. & Richa, K. Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 53–62 (2014).


    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • International Energy Agency, (IEA). Global EV Outlook 2019: Scaling-up the transition to electric mobility. https://www.oecd-ilibrary.org/energy/global-ev-outlook-2019_35fb60bd-en (2019).

  • International Renewable Energy Agency, (IRENA). Electricity storage and renewables: Costs and markets to 2030. https://www.irena.org/publications/2017/Oct/Electricity-storage-and-renewables-costs-and-markets (2017).

  • Vandeputte, K. Increasing the gap in Rechargeable Battery Materials. https://www.umicore.com/storage/group/powering-ahead-kurt-vandeputte.pdf (2018).

  • International Energy Agency, (IEA). World Energy Outlook 2018. https://iea.blob.core.windows.net/assets/77ecf96c-5f4b-4d0d-9d93-d81b938217cb/World_Energy_Outlook_2018.pdf (2018).

  • Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. PNAS 112, 4257–4262 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United Nations Department of Economic and Social Affairs. World Population Prospects 2019. https://population.un.org/wpp/Download/Standard/Population/ (2019).

  • Gulley, A. L., McCullough, E. A. & Shedd, K. B. China’s domestic and foreign influence in the global cobalt supply chain. Resour. Policy 62, 317–323 (2019).


    Google Scholar